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Experiments are described in which the stability of a liquid stabilized by a 
gradient of concentration of a solute has been investigated. In all the cases ob- 
served, convection began at marginal stability with an oscillatory motion. The 
boundary of stability in the (R, R,)-plane departs somewhat from that predicted 
by the simplest theories; the boundary is a curve, concave to the origin, and the 
critical Rayleigh number is high. The total rate of transport of solute increases 
much more rapidly than that of heat when the oscillations begin. The motions 
begin in cells which are separate from one another. 

1. Introduction 
The first stability analysis for the case of a fluid containing a vertical gradient 

of solute concentration in addition to a vertical temperature gradient was given 
by Vertgeim (1955). This paper considered only the possibility of monotonic 
instability, when the liquid was contained in a vertical cylinder. A number of 
analyses has since been published in which different geometries have been con- 
sidered and the possibility of overstable (oscillatory) motions allowed for; notably 
those of Veronis (1965), Sani (1965) and Nield (1967). Both Veronis and Sani limi- 
ted their investigations to the case of a horizontal layer of infinite extent having 
ideal (free, constant temperature, constant concentration) boundaries above and 
below, but considered the effects of finite amplitude motions. Nield considered the 
same geometry for the case of marginal stability only, but in such a way that, at 
least in principle, a wide variety of boundary conditions could be allowed for. 

It appears from these investigations that marginal stability will occur in an 
infinite horizontal layer with ideal boundaries when 

P, R 4- - R, = 2 7 ~ ~ 1 4  (monotonic instability), P 

or 
P 

P f l  
R+- R, = 2 7 ~ ~ 1 4  (overstability), 

where the second equation is an approximation appropriate to aqueous solutions. 
The angular frequency w of the overstable oscillations is given by 

( - R , ) - T 4 ] .  
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In the above equations, 

R = gaph4/(vK) (positive destabilizing) 

is the thermal Rayleigh number, and 

R, = gyyh4/(vK) (positive destabilizing) 

0 

R, and density effects .+ 
FIGURE 1. Temperature and concentration components of a density profile, 

and the resulting profile of Re. 

is its solutal analogue; g is the acceleration due to gravity, a is the coefficient of 
expansion and y its solutal analogue, p is the (constant) temperature gradient 
and y the (constant) concentration gradient in the layer, h is the depth of the 
layer, v is the kinematic viscosity and K the thermal diffusivity of the liquid, 
and P is the Prandtl number v/K and P, its solutal analogue v/D, where D is the 
diffusion constant for the solute. 

In  the (R, RJ-plane, the boundaries of stability are therefore straight lines for 
this ideal case. This paper describes experiments which were designed to test the 
predicted criterion for overstability by defining the observed boundary of stability 
for this case. 

Of necessity, the conditions under which the experiments were performed were 
not the same as those assumed in the analyses. In the first place, the surfaces of 
the tank in which the experiments were conducted were impermeable to the 
solute (sugar). Thus it was impossible to establish a steady flux of solute through 
the solvent (water), and the concentration profile was non-linear. Secondly, the 
convection occurred in a thin bottom layer of the solution, and the boundary 
conditions were far from ideal; the lower boundary was rigid, with a constant 
(zero) concentration gradient and a thermal condition which probably approxi- 
mated constant temperature; while the upper boundary, where the convecting 
liquid adjoined the stable region, was characterized by continuity of the hori- 
zontal velocity, the vertical solute and heat fluxes, the temperature, and the 
concentration. 



Thermosolutal convection at marginal stability 679 

The reason for the occurrence of the convection in a thin layer at the bottom of 
the tank may be seen as follows. Consider the case of a layer of solution in which 
there is a stabilizing gradient of concentration with impermeable horizontal 
boundaries, and a linear destabilizing profile of temperature. The contributions 
to density of the concentration and the temperature are sketched in figure 1. 
Superimposed is a sketch of the corresponding profile of R,(z), where 

PR&) R,(z) = R(z)+- 
P+1 

is the parameter which is expected to control the stability; here R and R, are 
defined in terms of the temperature and concentration at  the lower boundary and 
those at  x ,  the level at  which Re is evaluated. Because Re is proportional to z3, it 
is zero at  the lower boundary z = 0;  also it is positive just above it where the 
temperature effect predominates, and negative at  greater z where the solute 
effect predominates. Hence Be goes through a maximum at some level z = h, and 
it is to be expected that if its maximum value exceeds some critical value, con- 
vection will occur in the layer of depth h. 

2. Equipment 
The tank used in these experiments had two sides made of plate glass, chosen 

for good optical flatness. Internally, it  was 25 cm long and 6.4 cm wide, the largest 
vertical faces being glass and the ends Tufnol. It was filled to a depth of 9.7 cm. 
In order to ensure even heating of the liquid, the base of the tank was made of 
brass 1-25 cm thick, and it rested on a bath of oil which was electrically heated. 
The glass sides could be insulated with plastic foam during experiments, to 
ensure that heat flow was vertical. 

A scanning schlieren device rather similar to that of Longsworth (1939) was 
used to record the profile of concentration gradient in the solution. It was designed 
for rapid conversion to  a standard schlieren system, so that both quantitative 
and qualitative investigations were possible. The method exploits the fact that 
the refractive index of sucrose solutions varies with concentration, so that a 
record of the profile of refractive index gradient can yield the required informa- 
tion on concentration once the system has been calibrated. The refractive index 
also varies with temperature (so that it is defined, at  least approximately, by 
the resulting density), so this measurement was always made before heating 
began. The solution was introduced into the tank as a series of layers whose 
successive concentrations increased downwards; after several hours the con- 
trast between adjacent layers decayed by diffusion to produce a smooth profile. 

I n  order to  indicate the onset of convection, a pair of copper-Constantan 
thermocouples was used in the manner of Fultz et al. (1955). The junctions were 
0.5 and 1.0 cm from the bottom of the tank; an alternative pair, which could be 
chosen by switch, were at 1.5 and 2.0 cm. The chosen thermocouples were connec- 
ted in series with a Tinsley vernier potentiometer used as a potential source 
variable in 1,uV steps, and the difference passed to a galvanometer amplifier 
and thence to a strip chart recorder. Full-scale deflexion on the recorder corre- 
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sponded to about 2pV change of thermocouple output, and the sensitivity of the 
system was such that an oscillation of amplitude 5 x "C was readily detect- 
able, corresponding to a displacement amplitude of em at the highest heating 
rates. 

A miniature-bead thermistor was mounted in contact with the upper surface 
of the brass slab which formed the base of the tank. This was made one arm of a 
bridge circuit in which it was balanced against one of 24 resistors chosen by 
switches. The out-of-balance voltage of the bridge was recorded on a strip chart 
recorder, and the temperature could thus be determined continuously to 0.01 "C. 
The ranges were individually compared with a calibrated mercury-in-glass 
thermometer. 

3. Experiments 
The experiments were run in three series, the tank being refilled at  the start 

of each. Each experiment of a series began with the liquid isothermal; a concen- 
tration gradient profile was measured under these conditions, so that at  any later 
time up to the onset of convection the profile could be deduced from a knowledge 
of the diffusion constant. In  practice, change in the profile during this period was 
very small. 

After the concentration gradient profile had been measured, the heater was 
switched on and the current adjusted to give the desired rate of increase of 
temperature at  the bottom of the tank. Both this temperature and the amplified 
output of the differential thermocouples were recorded continuously throughout 
the experiment. Both records showed an increase with time; the former was kept 
on scale by switching to successively lower balance resistors in the bridge circuit, 
the latter by switching in successively greater bucking potentials from the 
potentiometer. The rate of rise of both records fell off with time, and the heating 
rate was modified from time to time to maintain progress towards marginal 
stability. It was not known in advance when this condition would occur in the 
case of the first run of a series. Thereafter the steady decrease of concentration 
gradient in the tank, which resulted from diffusion and such limited convection 
as occurred during individual experiments, was accompanied by a steady de- 
crease in the temperature gradient necessary to bring about marginal stability. 
Thus for runs other than the first of a series it was possible to predict roughly the 
critical output of the differential thermocouple. As this condition was approached 
the rate of increase of temperature gradient was maintained at a modest value. 

Marginal stability was reached in different runs after times varying from 15 min 
to nearly 3 h, depending on the heating rate and the magnitude of the concen- 
tration gradient. 

4. Nature of the marginal state 
A total of 15 runs were made in the three series. The nature of marginal sta- 

bility was in every case similar to that already described in a preliminary note 
(Shirtcliffe 1967). When the critical state was reached, an oscillation appeared 
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which was superimposed on the steady rise in output of the differential thermo- 
couple. Initially, this oscillation was quite regular. However, its amplitude 
generally grew quite rapidly, and this growth was accompanied by increasing 
disorder. About the time that the oscillation could be said to have become 
irregular, it became possible to see a cellular structure near the bottom of the 
tank; this is discussed further below. 

FIGURE 2 .  A section of the differential thermocouple record, run 4. The amplitude of the 
sudden change at  the start is 1 pV, and the initial output is 21 pV. The sensitivity was 
reduced by a factor 5 at the mark ‘ 50  mV’. While the amplitude of oscillation was nearly 
constant at 0.2 pV the temperature gradient was falling at  the rate of 0.2 yo per minute. 

It is worth noting that the growth in amplitude of the oscillations bears out the 
analysis of Veronis indirectly. His numerical integration of the equations for 
finite amplitude oscillations showed that convection always became monotonic 
after an initial oscillatory period, and that this steady convection was due to a 
subcritical instability which manifested itself only when the system was given 
a sufficiently large disturbance of appropriate form. Since the oscillations were 
initially very small, it  follows that they always grew in amplitude until the finite- 
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amplitude instability was initiated. Indeed the inevitability of this growth 
(when R and R, are constant) is suggested by the form of the curve of equilibrium 
heat flow versus R for constant R,. In the region of interest it appears that higher 
heat flow is associated with lower R; it was shown by Sani (1965) that, in a rather 
similar (monotonic) situation, such an equilibrium is unstable and there is a 
tendency for the motion to increase. 

5. Solute transfer 
Figure 2 shows an extract from the thermocouple record of run 4, in which an 

attempt was made to vary the heating rate in such a way as to prolong the period 
of small oscillations. The result was a period of nearly 10 min during which the 
amplitude of the oscillations was approximately constant. In  order to maintain 
zero growth rate it was necessary to reduce the temperature gradient con- 
tinuously, at  a rate of 0.2 % per minute. Presumably, therefore, the difference 
in concentration between bottom and top of the convecting layer was being 
reduced at about the same rate. Diffusion alone would have changed the concen- 
tration contrast by only about 0.006 %per minute. Hence even this lowamplitude 
oscillation was apparently transferring solute 30 times faster than pure diffusion 
would. The corresponding figure for the convective heat flow could not be de- 
termined but was apparently small. This result is consistent with the prediction 
of Veronis (1965) that the increase in solute transfer rate due to small-amplitude 
convection would be (K/D)2  (i.e. about lo4) times as great as that for heat, at  
least in the monotonic case. 

6. Cells 
Figure 3 (a)-(e) shows the tops of the cells formed at  an early stage of a typical 

run (run 15). These pictures were taken with the optics arranged as a standard 
schlieren system, which would pass only that light which had penetrated the tank 
in a region where the refractive index was increasing downwards at  more than a 
certain rate. Thus the image of the lowest part of the tank, where the density 
(and hence the refractive index) actually decreased downwards, was not illumin- 
ated. The cell tops were illuminated, and hence were regions in which the density 
increased downwards more rapidly than in surrounding liquid at the same level. 
This is consistent with the observation that solute was transferred more rapidly 
than heat by the convection; in terms of their respective effects on the density, 
the build-up of solute at  the top of the cell exceeded that of heat, producing a 
relatively large (stable) density gradient just above the cell. This view was con- 
firmed by limited observations which suggested that the temperature gradient in 
the cell was not greatly disturbed by the convection at  this stage. 

The sequence in figure 3 shows that the cells were independent and dynamic. 
They migrated sideways, and in addition were continually appearing and dis- 
appearing. The system only revealed those in which the solute flux was sufficiently 
high at  a given time; so it is not known whether the whole layer was populated 
by cells of which only a few were sufficiently active at  any time, or whether their 
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apparent independence was genuine. The first alternative appears more reason- 
able hydrodynamically, though there is evidence that the second is in fact true. 
In  either case the situation was clearly not the orderly array of rectangular con- 
tiguous similar cells assumed by the theories of this type of convection. 

7. Stability diagram 
To define the boundary of stability it was necessary to evaluate R and R, for 

the convecting layer at  marginal stability for each run. Unfortunately there was 
no direct measure of the depth of the layer, and it was therefore necessary to 
assume that this depth was equal to that at  which R,(x) was a maximum. Thus 
it was necessary to know the profiles of both temperature and concentration 
throughout the layer. 

The temperature at any level z was calculated from the measurement of the 
temperature at  the bottom of the tank as a function of time. The liquid was 
initially entirely at  temperature B0, and the temperature at  time t at z was given 
by (Carslaw & Jaeger 1959) 

22 

where T is the temperature at  z = 0. The integral was evaluated numerically 
from readings of T taken every 45 seconds during heating. 

The concentration gradient profile supplied by the optical system was approxi- 
mated by a Fourier series, which was then integrated to give an expression for 
the concentration profile. Allowance was made for the decay of harmonics 
between the time at which the gradient profile was measured and that at  which 
marginal stability was reached, although this was usually very small. 

Re(z) was calculated at  the time of marginal stability at  depth intervals of 
0-1 cm in the region of interest. The value of z for which Re was a maximum was 
then taken to represent the top of the convecting layer, and the required R and 
R, were taken to be those calculated for that level. In all these calculations, the 
values adopted for physical constants of the solution were those available in 
tables, principally the International Critical Tables, due allowance being made 
for the solute content and temperature variation. The thermal expansion co- 
efficient of sugar solutions was not available, and was therefore measured in a, 
dilatometer for 5 and 10 yo solutions between 0 "C and 35 "C; a double power 
series approximation was obtained by least-squares and used for calculation of 
the coefficient at  other concentrations and temperatures. 

The resulting stability diagram is shown in figure 4, from which it may be 
concluded that the theoretical linear boundary of stability is approximately 
confirmed. However, the experimental points show a marked tendency to occur 
at  excessive values of R when R is large, and to approach the predicted relation- 
ship only for small R. The critical value of Re, Rec, is about 2,500; this is much 
greater than the predicted value of 27n4/4( = 657), but most of this difference is 
accounted for by the non-ideal nature of the boundary conditions, and more 
interest attaches to the failure of the points to follow the line of predicted slope. 
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The departure from the predicted stability relationship cannot be accounted 
for by experimental error. Uncertainty in the thermal expansion coeficient and 
its solutal analogue amounts to 2 1 yo in R and R, independently; and that in 
(fiv), which is the denominator in both R and R,, amounts to  2 5 yo in R and 
R, jointly. A further uncertainty of 1-2 yo in R and 1 % in R,$ independently 
arises from measurement of temperature and concentration respectively. The 
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FIGURE 4. Stability diagram for overstability, assuming a linear Re. 

greatest uncertainty, amounting to about k 10 %, arises from uncertainty in 
the depth of the convecting layer; but this affects both R and R, in such a way that 
the locus of possible positions (R, R,) is nearly parallel to the trend of the graph, 
and does not greatly modify the result. The only remaining possible source of 
error is the determination of the time of onset of overstability. Except in runs 
(notably run 1) where the heating rate was excessive, this uncertainty is negli- 
gible, particularly as this effect also acts almost along the trend of the graph. 

The predicted line has slope P/(P + 1). It is tempting to conclude from figure 4 
that this slope should be modified, but in fact this would not produce agreement 
between theory and experiment. If a different value is assumed for this slope, for 
example, unity, this affects the calculations of convecting depth in such a way 
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that the same disparity exists between the experimental points and the new 
theoretical line. 

Thus it seems very probable that, although the theoretical linear stability 
criterion is approximately correct, it is not exact; and that the true criterion is 
represented by a curve rather than a line in the (R, R,)-plane. This result accords 
with the conclusion of Weld (1967) for the case of monotonic instability. The 
curvature can result from the fact that, at the lower boundary, the temperature 
and the concentration were subjected to formally different conditions. 

In  view of the method used to calculate R and R,, it is not possible to  decide 
directly from figure 4 what form the non-linearity of the stability criterion takes. 
To do this satisfactorily it would be necessary to have an independent measure 
of the depth of the convecting layer. The only measure available is the record of 
observations of cell heights. These were not very accurate, and were measured 
sufficiently long after convection began to throw doubt on their relevance to the 
marginally stable state. However, the graph of R versus R,, where these are the 
quantities calculated at  marginal stability for the level later occupied by the 
tops of the observed cells, is displayed in figure 5, and shows reasonably syste- 
matic results. The boundary of stability is undoubtedly curved, and is represented 
quite well by the equation 

R( 1 + 2-5 x 10-gR) + 0*88R, = Re,, 

where R, is about 5,000. 
With this relationship as a guide, a search was made for a similar one which 

would give better agreement with that derived from the experiments, where the 
assumed relationship was used, as previously, to determine the convecting depth. 
To ensure that Re had a maximum in the region of interest, a cubic term had to be 
included. Figure 6 shows the stability diagram which resulted from assuming 
that its form would be 

R(1+ 4 x 10d6R - 10-11R2) + 0*88R, = R,, 

together with the graph of this expression for Re, = 5,000. Agreement is still 
not complete, but the data do not justify a more intensive search for a better fit. 
One virtue of this choice is that it gives a good agreement in the main between 
calculated convecting depths and observed cell heights, as shown in table 1. 
Discrepancies are mainly associated with the fact that the maximum of Re is 
now rather broad, so that the depth h is ill-defined. It should be noted that the 
significance of these particular expressions for the boundary of stability is 
probably limited to a demonstration that the boundary is curved, and that the 
curvature has a particular sense, 

The results of run 1 do not conform with the general pattern. No source of 
error could be found to account for this, so it might be associated with the par- 
ticularly high rate of heating used on this occasion, which led to a very markedly 
non-linear temerature profile. In  the case of monotonic pure-thermal convection, 
Currie (1967) has predicted that very rapid heating may have a substantial effect 
on the critical Rayleigh number. 
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FIGURE 5. Stability diagram for overstability, using cell heights 

to  estimate the convecting depths. 
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FIGCTEE 6. Stability diagram for overstability, assuming a non-linear (cubic) Re. 
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RUII 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Calculated (em) 
1.4 
1.2 
1.2 
1.3 
1.0 
1 .o 
1-0 
1.1 
1.1 
1 .o 
0.8 
0.8 
0.8 
0.9 
0.8 

Observed (em) 
1 *4 
1.4 
1-2 
1-3 
0.8 

0.7-1.0 
0.7-1.0 
0.8 
0.9 

0.9-1.1 
0.9 

0.5-1.0 
1.0 
0.9 
0.8 

TABLE 1. Comparison of observed cell heights with calculations of the layer depth using 
the non-linear (cubic) stability criterion 

Calculated period (sec) 

RLlIl 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Observed period (sec) 
53*5 
85 * 2 
7 3 5 2  
6 9 5 2  
45 + 2 
4 8 5 5  
5 6 + 2  
55 5 2 
5 3 5  1 
3 2 5 2  
30+5  
47+ 1 
65+5  
5 3 + 2  
5 9 5 4  

< 
Linear Re 

56 
63 
58 
55 
39 
41 
41 
41 
43 
29 
31 
35 
59 
43 
45 

Cubic Re 
49 
59 
50 
48 
35 
36 
37 
35 
37 
24 
29 
33 
59 
40 
45 

- 7  

Cell height 
49 
53 
50 
48 
39 

43-36 
44-37 

41 
40 

27 
41-30 

49 
40 
45 

26-23 

TABLE 2. Periods of the overstable oscillations 

Although the data do not provide an unequivocal value of R,,, it is likely that 
the value is higher than expected. The overstable layer had been expected to 
behave as though its lower boundary was plane and rigid, and its upper boundary 
approximately plane and stress-free. By analogy with pure-thermal convection, 
Re, would then have been about 1,200 (D. A. Nield, pers. comm.), or perhaps as 
high as 1,700 if the upper boundary was effectively rigid. A higher value implies 
that, in the thermosolutal case, more work has to be done against friction by the 
buoyancy force. The only possible cause for this seems to be that the cells which 
formed first were independent of one another, and not contiguous as suggested 
by studies of pure-thermal convection. In  this case the buoyancy force in a cell 
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would cause sympathetic motions in a relatively large volume of liquid in addi- 
tion to the oscillation in the cell itself, against the frictional effect of viscosity. 

8. Periods of the oscillations 
The measured periods of the oscillations just after marginal stability are shown 

in table 2. In  each case, the measurement was made over as many complete 
cycles as possible until the oscillation became irregular. This number varied 
from 2 to 20, producing a range of uncertainties in the periods. 

The period expected for each run was calculated in accordance with the re- 
lationship given in $1. Since the period is a function of the convecting depth, 
three values were calculated for each run, corresponding to the three estimates of 
this depth; namely, by taking the maximum of the linear Re, the maximum of the 
cubic Re, or the observed cell depth. The values are included in table 2 .  

There is a strong tendency for the calculated periods to be less than the ob- 
served ones. This tendency is least obvious if the linear Re is used to calculate the 
convecting depth, since it generally gives the smallest of the three depth esti- 
mates. The discrepancy is presumably associated with the difference between the 
actual form of the cells and that assumed in the theory. For a given solute distri- 
bution, the period is determined by the thermal diffusivity and the viscosity, 
solute diffusion being negligible. Since it increases with the viscosity of the 
liquid, the observation of excessive values may be ascribed to the same cause as 
the high R,, namely the high viscous damping of the motion when the cells are 
not in contact. 

I am grateful to Dr. D. Nield for a number of helpful discussions on this subject. 
The work was supported by the New Zealand University Grants Committee. 
Computations were performed on the Elliott 503 computer of the Applied 
Mathematics Division, N.Z. D.S.I.R. 

R E F E R E N C E S  

CARSLAW, H. S. & JAEGER, J. C. 1959 Conduction of Heat in Solids, 2nd edition. Oxford: 

CURRIE, I. G. 1967 The effect of heating rate on the stability of stationary fluids. J .  Fluid 

FULTZ, D., NAKAGAWA, Y. & FRENZEN, P. 1955 Experiments on overstable thermal 

LONGSWORTH, L. G. 1939 A modification of the sehlieren method for use in electrophoretic 

NIELD, D. A. 1967 The thermohaline Rayleigh-Jeffreys problem. J .  Fluid Mech. 29, 

SANI, R. 1965 On finite amplitude roll-eel1 disturbances in a fluid layer subjected to both 
mass and enthalpy transfer. Am. I w t .  Chem. Emgng J. 11, 971-980. 

SHIRTCLIFFE, T. G. L. 1967 Thermosolutal convection : observation of an overstable 
mode. Nature, Lond. 213, 489-490. 

VERONIS, G. 1965 On finite amplitude instability in thermohaline convection. J .  Marine 
Res. 23, 1-17. 

VERTGEIM, B. A. 1955 On the conditions of appearance of convection in a binary mixture. 

Clarendon. 

Mech. 29, 337-347. 

convection in mercury. Proc. Roy. Soc. A 231, 211-225. 

analysis. J .  Am. Chem. SOC. 61, 529-530. 

545-558. 

PMM, 19, 747-750. 



Journal of Fluid Mechanics, Vol. 35, part 4 Plate 1 

FIGURE 3(a )  

FIGURE 3 ( b )  

FIGURE 3. Schlieren observation of cell tops, run 15. Only the lower part of the field of 
view is shown. The three thermocouple wires visible are 1.0, 1-5 and 2.0 em above the tank 
bottom. These photographs were taken between 9 and 17 min after marginal stability. 
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FIGURE 3 ( c )  

FIGURE 3 ( d )  

FIGURE 3 ( e )  
For legend see previous page 




